Deformation and Failure Properties of Lithium-Ion Battery Under Axial Nail Penetration

Author:

Wang Lubing1

Affiliation:

1. Key Laboratory Impact and Safety Engineering, Ministry of Education; Department of Mechanics and Engineering Science, Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China

Abstract

Abstract As one of the commonly used power sources for electric vehicles, cell phones, and laptops, lithium-ion batteries (LIBs) have aroused more and more attention. Lithium-ion batteries will inevitably suffer from external abuse loading, triggering thermal runaway. Nail penetration is one of the most dangerous external loading methods, so it is meaningful to study the failure behaviors under this loading condition. In this article, the experimental study of 18650 cylindrical lithium-ion batteries (with nickel cobalt aluminum oxide cathode) under axial nail penetration is carried out. Force, temperature, and voltage data are recorded synchronously to learn its mechanical, thermal, and electrochemical behaviors, respectively. Then, the loading velocity effect is discussed, and the results show that the loading velocity has no obvious effect on failure properties of lithium-ion battery. Besides, deformation and failure properties of lithium-ion battery are discussed in detail. A simple homogenous computational model is established to predict the mechanical responses of the battery. The partially detailed model is also established to explore the failure mechanism. The batteries are disassembled after loading to better understand the failure morphologies. Two failure modes are discovered through experiments and computational model. The findings can contribute to a better understanding of the failure mechanism of lithium-ion battery under axial nail penetration, providing reference for battery safe design.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3