Effect of Filling Ratio and Tilt Angle on the Performance of a Mini-Loop Thermosyphon

Author:

Tharayil Trijo1,Gitty Neha2,Asirvatham Lazarus Godson3,Wongwises Somchai4

Affiliation:

1. Department of Mechanical Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzha 690529, Kerala, India e-mail:

2. Department of Mechanical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India e-mail:

3. Department of Mechanical and Aerospace Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India e-mail:

4. Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Faculty of Engineering, Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand e-mail:

Abstract

The thermal behavior of a compact mini-loop thermosyphon is experimentally studied at different filling ratios (20%, 30%, 40%, 50%, and 70%) and tilt angles (0 deg, 30 deg, 45 deg, 60 deg, and 90 deg) for the heat loads of 20–300 W using distilled water as the heat pipe fluid. The presence of microfins at the evaporator results in an average decrease of 37.4% and 15.3% in thermal resistance and evaporator wall temperature, respectively, compared with the evaporator with a plain surface. Both filling ratio (FR) and tilt angle influence the heat transfer performance significantly, and the best performance of the mini-loop thermosyphon is obtained at their optimum values. The thermal resistance and thermal efficiency values lie in the ranges of 0.73–0.076 K/W and 65–88.3% for different filling ratios and tilt angles. Similarly, evaporator heat transfer coefficient and evaporator wall temperature show significant variation with changes in filling ratio and tilt angle. A combination of the optimum filling ratio and tilt angle shows a lowest thermal resistance of 0.076 K/W and a highest evaporator wall temperature of 68.6 °C, which are obtained at 300 W. The experimental results recommend the use of mini-loop thermosyphon at an optimum filling ratio for electronics cooling applications, which have a heat dissipation of 20–300 W.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental investigation on the heat transfer performance of flat heat pipe embedded with internally cooled condenser;International Journal of Heat and Mass Transfer;2024-09

2. Thermal Characteristics of Nano-fluid-Based Wickless Heat Pipe for Electronic Thermal Management;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

3. Experimental Study on the Small Two-Phase Thermosyphon Loop With Minichannel Evaporator;Journal of Thermal Science and Engineering Applications;2023-11-16

4. An experimental investigation on the heat transfer characteristics of closed-loop pulsating heat pipe with graphene–water nanofluid;Journal of Thermal Analysis and Calorimetry;2022-07-24

5. Experimental investigation of geyser boiling in a small diameter two-phase loop thermosyphon;Experimental Thermal and Fluid Science;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3