Effect of Working Fluid, Orientation, and Cooling Mode on Thermal Performance of Miniature Flat Heat Pipe

Author:

Rathod Jigneshsinh12,Lakhera Vikas3,Shukla Atindra4

Affiliation:

1. Nirma University Department of Mechanical Engineering, Institute of Technology, , Ahmedabad, Gujarat 382481 , India ;

2. Dharmsinh Desai University Department of Mechanical Engineering, Faculty of Technology, , Nadiad, Gujarat 387001 , India

3. Nirma University Department of Mechanical Engineering, Institute of Technology, , Ahmedabad, Gujarat 382481 , India

4. Dharmsinh Desai University Shah-Schulman Centre for Surface Science and Nanotechnology, , Nadiad, Gujarat 387001 , India

Abstract

Abstract Flat heat pipes (FHPs) are commonly used as a passive cooling system in portable electronic gadgets due to their compact profile. The present study investigates the effect of different working fluids on the thermal performance of a miniature FHP under different orientations and condenser cooling mechanisms and the start-up performance of FHP. Deionized water, acetone, ethanol, and methanol are chosen as working fluids in the FHP. Five different inclinations (0 deg (horizontal), 30 deg, 45 deg, 60 deg, and 90 deg (vertical)) and two different condenser cooling methods (natural convection and forced convection with fan cooling) are considered in this experimental study. The FHP thermal performance is quantified in terms of overall temperature difference, thermal resistance, and effective thermal conductivity. The results indicate that comparatively higher effective thermal conductivity values are obtained for methanol and acetone heat pipes at low heat loads and under natural convection. At higher heat loads, the ethanol heat pipe had higher effective thermal conductivity values for the same condenser cooling method. For the case of the forced convection cooling mode, the methanol heat pipe had enhanced thermal performance as compared to the other three fluids for all heat load ranges and different inclinations. Due to the higher boiling point of water, as a working fluid water is not suitable in most of the experimental trials except at high heat load under forced convection cooling and in a horizontal orientation. The maximum effective thermal conductivity of 7846 W/mK is obtained for FHP filled with methanol at 24 W heat load and 90 deg orientation under forced convection condenser cooling.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3