A Control-Theoretic Model for Human Time-Motion Evaluation in Pick-and-Place Operations

Author:

Wang Chao1,Ravani Bahram2,Hess Ronald A.3

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California—Davis, Davis, CA 95616 e-mail:

2. Professor Fellow ASME Department of Mechanical and Aerospace Engineering, University of California—Davis, Davis, CA 95616 e-mail:

3. Professor Department of Mechanical and Aerospace Engineering, University of California—Davis, Davis, CA 95616 e-mail:

Abstract

This paper deals with physical modeling of human hand–eye coordinated movement for applications in time-motion study of pick-and-place operations. Time-motion studies typically use experimentations to closely examine each segment of a worker's pick-and-place movements in order to design a more optimized operation. This paper presents two different methods that can replace the need for experimentation or estimation in the time motion process with control-theoretic models. The first method is a control-theoretic physical model of the human hand–eye coordinated movement in performing a pick-and-place operation. It is based on an extension of control theoretic models of airplane pilots. The second method combines two existing techniques developed in the literature for different purposes. It is shown in this paper that the combination of these two existing methods provides for an alternative approach that can be used for time-motion studies related to the human pick-and-place operation. Using simple experimentation, it is shown that both methods provide reasonable model-based representation of time motion studies for pick-and-place tasks. In developing the physical model, a method based on the use of the quantitative feedback theory (QFT) is also developed for tuning the physical model that can be utilized in making the model specific to different applications involving human hand–eye coordinated movements. Furthermore, the physical model is applied in a predictive fashion and it is shown that it can successfully estimate the movement time for manual pick-and-place tasks found in some industrial applications.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference41 articles.

1. The MTM Association for Standards and Research;MTM Systems,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3