A New Scheduling Quantitative Feedback Theory-Based Controller Integrated with Fault Detection for Effective Vibration Control

Author:

Jeyasenthil R.1,Lee Yang-Sup2,Choi Seung-Bok1ORCID

Affiliation:

1. Smart Structures and System Laboratory, Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea

2. Faculty of Mechanical and Automotive Engineering, Keimyung University, Daegu, Republic of Korea

Abstract

In this work, a new integrated fault detection and control (IFDC) method is presented for single-input/single-output systems (SISOs). The idea is centered on comparing the closed-loop output between the faulty system and fault-free one to schedule/switch the feedback control once the fault occurs. The problem addressed in this work is the output disturbance rejection. The set of feedback controllers are designed using quantitative feedback theory (QFT) for fault-free and faulty systems. In the context of QFT-based IFDC, the proposed active approach is novel, simple, and easy to implement from an engineering point of view. The efficiency of the proposed method is assessed on a flexible smart structure system featuring a piezoelectric actuator. The actuator and sensor faults considered are the multiplicative type with both fixed and time-varying magnitudes. In the fixed magnitude fault case, the actuator/sensor output delivering capability is reduced by 50% (multiplying a factor of 0.5 to its actual output), while in the time-varying magnitude case, it becomes 60% to 50% for a particular time interval. In both cases, the proposed control method identifies the fault and activates the required controller to satisfy the specification with less control effort as opposed to the passive QFT design featured by faulty system design alone.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3