A Comparative Study of Different Objectives Functions for the Minimal Fuel Drive Cycle Optimization in Autonomous Vehicles

Author:

Prakash Niket1,Kim Youngki2,Stefaopoulou Anna G.3

Affiliation:

1. Lay Automotive Laboratory, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109 e-mail:

2. Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 e-mail:

3. Professor Mechanical Engineering, Lay Automotive Laboratory, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109 e-mail:

Abstract

With the advent of self-driving autonomous vehicles, vehicle controllers are free to drive their own velocities. This feature can be exploited to drive an optimal velocity trajectory that minimizes fuel consumption. Two typical approaches to drive cycle optimization are velocity smoothing and tractive energy minimization. The former reduces accelerations and decelerations, and hence, it does not require information of vehicle parameters and resistance forces. On the other hand, the latter reduces tractive energy demand at the wheels of a vehicle. In this work, utilizing an experimentally validated full vehicle simulation software, we show that for conventional gasoline vehicles the lower energy velocity trajectory can consume as much fuel as the velocity smoothing case. This implies that the easily implementable, vehicle agnostic velocity smoothing optimization can be used for velocity optimization rather than the nonlinear tractive energy minimization, which results in a pulse-and-glide trajectory.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3