Abstract
The ever-increasing number of vehicles on the road puts pressure on car manufacturers to make their car fuel-efficient. With autonomous vehicles, we can find new strategies to optimize fuels. We propose a reinforcement learning algorithm that trains deep neural networks to generate a fuel-efficient velocity profile for autonomous vehicles given road altitude information for the planned trip. Using a highly accurate industry-accepted fuel economy simulation program, we train our deep neural network model. We developed a technique for adapting the heterogeneous simulation program on top of an open-source deep learning framework, and reduced dimension of the problem output with suitable parameterization to train the neural network much faster. The learned model combined with reinforcement learning-based strategy generation effectively generated the velocity profile so that autonomous vehicles can follow to control itself in a fuel efficient way. We evaluate our algorithm’s performance using the fuel economy simulation program for various altitude profiles. We also demonstrate that our method can teach neural networks to generate useful strategies to increase fuel economy even on unseen roads. Our method improved fuel economy by 8% compared to a simple grid search approach.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献