Design of a Nonreacting Combustor Simulator With Swirl and Temperature Distortion With Experimental Validation

Author:

Hall Benjamin F.1,Chana Kam S.1,Povey Thomas1

Affiliation:

1. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK e-mail:

Abstract

Nonuniform combustor outlet flows have been demonstrated to have significant impact on the first and second stage turbine aerothermal performance. Rich-burn combustors, which generally have pronounced temperature profiles and weak swirl profiles, primarily affect the heat load in the vane but both the heat load and aerodynamics of the rotor. Lean burn combustors, in contrast, generally have a strong swirl profile which has an additional significant impact on the vane aerodynamics which should be accounted for in the design process. There has been a move towards lean burn combustor designs to reduce NOx emissions. There is also increasing interest in fully integrated design processes which consider the impact of the combustor flow on the design of the high pressure vane and rotor aerodynamics and cooling. There are a number of current large research projects in scaled (low temperature and pressure) turbine facilities which aim to provide validation data and physical understanding to support this design philosophy. There is a small body of literature devoted to rich burn combustor simulator design but no open literature on the topic of lean burn simulator design. The particular problem is that in nonreacting, highly swirling and diffusing flows, vortex instability in the form of a precessing vortex core or vortex breakdown is unlikely to be well matched to the reacting case. In reacting combustors the flow is stabilized by heat release, but in low temperature simulators other methods for stabilizing the flow must be employed. Unsteady Reynolds-averaged Navier–Stokes and large eddy simulation have shown promise in modeling swirling flows with unstable features. These design issues form the subject of this paper.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference40 articles.

1. Developments in Hot-Streak Simulators for Turbine Testing;ASME J. Turbomach.,2009

2. Analytical and Experimental Study of Flow Through an Axial Turbine Stage With Nonunifom Inlet Radial Temperature Profiles,1983

3. Redistribution of Inlet Temperature Distortion in an Axial Flow Turbine Stage;J. Propul. Power,1989

4. Haldeman, C., 1989, “An Experimental Study of Radial Temperature Profile Effects on Turbine Tip Shroud Heat Transfer,” M.S. thesis, MIT, Cambridge, MA.

5. Shang, T., and Epstein, A. H., 1996, “Analysis of Hot Streak Effects on Turbine Rotor Heat Load,” ASME Paper No. 96-GT-118.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3