Development of an Active Compliance Chamber to Enhance the Performance of Hydraulic Bushings

Author:

Arzanpour S.1,Golnaraghi M. F.2

Affiliation:

1. Simon Fraser University, Surrey, BC, V3T 0A3, Canada

2. Department of Mechatronic Systems Engineering, Burnaby Mountain Chair, School of Engineering Science, Simon Fraser University, Surrey, BC, V3T 0A3, Canada

Abstract

With the new improvements in the fuel economy engines and to enhance the passenger’s comfort, the topic of active vibration cancellation has received a lot of attention recently by both the automotive industry and researchers. Engine mounts and bushings are the devices used to suppress the transverse and tensional vibrations of engines, respectively. Engine mounts and bushings are primarily designed for the first order vibration of engine. Higher order vibrations, however, are neglected due to their lower amplitudes. Although lots of research has been focused on the improvement of the design and performance of engine mounts, engine bushings has not been addressed well in the literature. This paper focuses on the modeling and design of an active bushing, which addresses the higher order vibrations in engines. Such a bushing has a significant advantage in the ride quality of the newly commercialized variable displacement engine (VDE), where the amplitude of vibration induced by switching is higher than normal engines. For VDEs the higher amplitude of vibration makes the higher orders sensible. Isolation of these vibrations is beyond the capabilities of the passive hydraulic bushings. In this paper the design of a novel active chamber is proposed, which is ultimately utilized to control the fluid pressure inside the bushing. It is evident that the fluid pressure significantly contributes to the dynamic performance of the hydraulic bushing. The active chamber described in this paper utilizes a magnetic actuator, excited by electrical current signal, which is fed to a solenoid coil. The pulses produced by the magnetic actuator are used to adjust the pressure at any specific frequency. This feature enables the active chamber not only to alter the frequency response characteristic of the hydraulic bushing, but also to generate complex pressure frequency responses. A mathematical linear model for the magnetic actuator, and the active bushing assembly, is provided and then verified experimentally. The experimental results confirm that the active hydraulic bushing can well address the sophisticated vibration isolation requirements particular to the VDE systems.

Publisher

ASME International

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3