A Primary Computational Fluid Dynamics Study of Pre- and Post-TEVAR With Intentional Left Subclavian Artery Coverage in a Type B Aortic Dissection

Author:

Qiao Yonghui1,Fan Jianren1,Ding Ying2,Zhu Ting3,Luo Kun1

Affiliation:

1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China e-mail:

2. Department of Radiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China e-mail:

3. Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China e-mail:

Abstract

The impact of left subclavian artery (LSA) coverage during thoracic endovascular aortic repair (TEVAR) on the circulatory system is not fully understood. Here, we coupled a single-phase non-Newtonian model with fluid–structure interaction (FSI) technique to simulate blood flow in an acute type B aortic dissection. Three-element Windkessel model was implemented to reproduce physiological pressure waves, where a new workflow was designed to determine model parameters with the absence of measured data. Simulations were carried out in three geometric models to demonstrate the consequence of TEVAR with the LSA coverage; case A: pre-TEVAR aorta; case B: post-TEVAR aorta with the disappearance of LSA; case C: post-TEVAR aorta with virtually adding LSA. Results show that the blood flow through the compressed true lumen is only 8.43%, which may lead to ischemia in related organs. After TEVAR, the wall pressure on the stented segment increases and blood flow in the supra-aortic branches and true lumen is improved. Meantime, the average deformation of the aorta is obviously reduced due to the implantation of the stent graft. After virtually adding LSA, significant changes in the distribution of blood flow and two indices based on wall shear stress are observed. Moreover, the movement of residual false lumen becomes stable, which could contribute to patient recovery. Overall, this study quantitatively evaluates the efficacy of TEVAR for acute type B aortic dissection and demonstrates that the coverage of LSA has a considerable impact on the important hemodynamic parameters.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3