Understanding Thermal Lagging Behaviors in Thermoelectric Elements With the Dual-Phase-Lag Model

Author:

Yeung Wing K.1,Lam Tung T.2

Affiliation:

1. Structural Dynamics Department, Vehicle Systems Division, The Aerospace Corporation, 2310 East El Segundo Blvd., El Segundo, CA 90245-4609

2. Thermal Control Department, Vehicle Systems Division, The Aerospace Corporation, 2310 East El Segundo Blvd., El Segundo, CA 90245-4609

Abstract

Abstract This study investigates the heat transport mechanism in semiconductor elements within a homogeneous thermoelectric cooling system using the dual-phase-lag (DPL) model. The thermal lagging behavior is analyzed and explored during the energy transport process. The coupled energy and constitutive partial differential equations are solved simultaneously to reduce the complexity of the high-order spatial and time derivatives. This approach simplifies the mathematical solution process and reduces numerical instabilities when compared to the conventional methodology in which either the temperature or heat flux is solved individually with a single equation. The effect of the thermal lagging behavior on energy transport is examined and compared to results by using the Cattaneo–Vernotte model. Furthermore, the phase-lag behavior on the temperature and heat flux profiles is investigated in detail. This study provides perceptive information for engineering applications in which the microscale heat transport phenomenon plays a significant role during the design process. Adding the dual-phase-lag model to the traditional heat diffusion model is a complementary option for engineers in the thermoelectric industry.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3