Large Eddy Simulations of Turbulent Gas-Liquid Flows in a Diverging Horizontal Channel Using a Hybrid Multiphase Approach

Author:

Nguyen Bich-Diep1,Popp Sebastian1,Hundshagen Markus2,Skoda Romuald2,Mansour Michael34,Thévenin Dominique5,Hasse Christian1

Affiliation:

1. Institute for Simulation of Reactive Thermo-Fluid Systems, TU Darmstadt , Otto-Berndt Str. 2, Darmstadt 64287, Germany

2. Chair of Hydraulic Fluid Machinery, Ruhr University Bochum , Universitätsstr. 150, Bochum 44801, Germany

3. Mechanical Power Engineering Department, Faculty of Engineering - Mataria, Helwan University , Cairo 11718, Egypt ; , Universitätsplatz 2, Magdeburg 39106, Germany

4. Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg” Otto Von Guericke” , Cairo 11718, Egypt ; , Universitätsplatz 2, Magdeburg 39106, Germany

5. Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg” Otto Von Guericke” , Universitätsplatz 2, Magdeburg 39106, Germany

Abstract

Abstract Centrifugal pumps conveying gas–liquid flows are often designed based on pure liquid flows due to limited understanding of gas formations within a gas–liquid flow. Computational fluid dynamics (CFD) can provide insights into the flow characteristics, yet standard multiphase models are not able to describe a wide range of spatial scales. In this study, a hybrid multiphase approach for turbulent flows based on an Eulerian-Eulerian solver with volume-of-fluid (VOF) enhancements is applied, which can handle multiple flow regimes (continuous gas/liquid, disperse bubbles) at once. Large eddy simulations (LES) of gas–liquid-flows through a diverging horizontal channel (diffuser) are performed to evaluate the possibilities and limitations of this approach. Three representative cases, each containing different flow characteristics, are computed using a fixed bubble size approach. The results show that the hybrid approach is able to capture all flow characteristics and predict the gas void size and position precisely. However, it can be observed that the performance of the approach significantly depends on the specified bubble size.

Funder

Allianz Industrie Forschung

Publisher

ASME International

Subject

Mechanical Engineering

Reference50 articles.

1. Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions;J. Pet. Sci. Eng.,2008

2. A Review of Experiments and Modeling of Gas-Liquid Flow in Electrical Submersible Pumps;Energies,2018

3. Experimental Study of Two-Phase Pump Performance Using a Full Size Nuclear Reactor Pump;Nucl. Eng. Des.,1999

4. An Analytical Model for Prediction of Two-Phase (Noncondensable) Flow Pump Performance;ASME J. Fluids Eng.,1985

5. Unsteady Compressible Two-Phase Flow Model for Predicting Cyclic Heat Pump Performance and a Comparison With Experimental Data;Int. J. Refrig.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3