Nonlinear Dynamics of MEMS Arches Assuming Out-of-Plane Actuation Arrangement

Author:

Ouakad Hassen M.1,Najar Fehmi2

Affiliation:

1. Department of Mechanical and Industrial Engineering,College of Engineering,Sultan Qaboos University,Al-Khoud 123, Muscat, Omane-mail: houakad@squ.edu.om

2. Applied Mechanics and Systems Research Laboratory,Tunisia Polytechnic School,University of Carthage,BP 743, Al Marsa 2078, Tunisiae-mail: fehmi.najar@ept.rnu.tn

Abstract

Abstract In this work, the nonlinear dynamics of a microbeam shallow arch actuated through an out-of-plane electrostatic force arrangement is investigated. A reduced order model is developed to analyze the static, free vibration, and nonlinear dynamic response of the microstructure under different direct current and alternating current load conditions. A numerical investigation is conducted by comparing the response of the arch near primary and secondary resonances using a nonparallel plates actuation scheme where the arch itself forms a moving electrode. The results show that the nonparallel excitation can be efficient for primary and secondary resonances excitation. Moreover, unlike the classical parallel plates method, where the structure is vulnerable to the dynamic pull-in instability, this nonparallel excitation arrangement can provide large amplitude motion while protecting the structure from the so-called static and dynamic pull-in instabilities. In addition to primary resonance, secondary resonances are demonstrated at twice and one-half the primary resonance frequency. The ability to actuate primary and/or secondary resonances without reaching the dynamic pull-in instability can serve various applications where large strokes increase their performance, such as for resonator-based sensitive mass sensors.

Publisher

ASME International

Subject

General Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3