A Novel Control Strategy for Pilot Controlled Proportional Flow Valve With Internal Displacement-Flow Feedback

Author:

Wang He1,Wang Xiaohu1,Huang Jiahai2,Wang Jun1,Quan Long3

Affiliation:

1. Key Laboratory of Advance Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

2. Key Laboratory of Advance Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology Taiyuan 030024, China

3. Key Laboratory of Advance Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China e-mail:

Abstract

The present study is focused on the construction of a well-performing pilot controlled proportional flow valve with internal displacement-flow feedback. A novel control strategy for the valve is proposed in which the flow rate through the valve is directly controlled. The linear mathematical model for the valve is established and a fuzzy proportional–integral–derivative (PID) controller is designed for the flow control. In order to obtain the flow rate used as feedback rapidly and accurately in real-time, back propagation neural network (BPNN) is employed to predict the flow rate through the valve with the pressure drop through the main orifice and main valve opening, and the predicted value is used as the feedback. Both simulation and experimental results show that the predicted value obtained by BPNN is reliable and available for the feedback. The proposed control strategy is effective with which the flow rate through the valve remains almost constant when the pressure drop through the main orifice increases and the valve can be applied to the conditions where the independence of flow rate and load is required. For the valve with the proposed control strategy, the nonlinearity is less than 5.3%, the hysteresis is less than 4.2%, and the bandwidth is about 16 Hz. The static and dynamic characteristics are reasonable and acceptable.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3