Cyclic Sheet Metal Test Comparison and Parameter Calibration for Springback Prediction of Dual-Phase Steel Sheets

Author:

Gu Bin1,He Ji2,Li Shuhui2,Chen Yuan1,Li Yongfeng1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China

2. State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

Springback is an important issue for the application of advanced high-strength steels (AHSS) in the automobile industry. Various studies have shown that it is an effective way to predict springback by using path-dependent material models. The accuracy of these material models greatly depends on the experimental test methods as well as material parameters calibrated from these tests. The present cyclic sheet metal test methods, like uniaxial tension–compression test (TCT) and cyclic shear test (CST), are nonstandard and various. The material parameters calibrated from these tests vary greatly from one to another, which makes the usage of material parameters for the accurate prediction of springback more sophisticated even when the advanced material model is available in commercial software. The focus of this work is to compare the springback prediction accuracy by using the material parameters calibrated from tension–compression test or cyclic shear test, and to further clarify the usage of those material parameters in application. These two types of nonstandard cyclic tests are successfully carried out on a same test platform with different specimen geometries. One-element models with corresponding tension–compression or cyclic shear boundary conditions are built, respectively, to calibrate the parameters of the modified Yoshida–Uemori (YU) model for these two different tests. U-bending process is performed for springback prediction comparison. The results show, for dual phase steel (DP780), the work hardening stagnation is not evident by tension–compression tests at all the prestrain levels or by cyclic shear test at small prestrain γ = 0.20 but is significantly apparent by cyclic shear tests at large prestrain γ = 0.38, 0.52, 0.68, which seems to be a prestrain-dependent phenomenon. The material parameters calibrated from different types of cyclic sheet metal tests can vary greatly, but it gives slight differences of springback prediction for U-bending by utilizing either tension–compression test or cyclic shear test.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3