Experimental Validation of a Seal Flutter Model

Author:

Corral Roque1,Greco Michele1

Affiliation:

1. School of Aeronautics and Space, Universidad Politécnica de Madrid, Madrid 28040, Spain

Abstract

Abstract In this paper, the predictions of an analytical model for seal flutter have been compared with the experimental data of a rotating multi-cavity labyrinth seal test rig. The experiments were conducted to assess the flutter inception in a large set of operating conditions by varying the rotational speed and the total pressure ratio across the seal. The analytical model derived by Corral et al. (2022, “Effective Clearance and Differential Gapping Impact on Seal Flutter Modelling and Validation,” ASME J. Turbomach., 144 (7), p. 071010) has been previously validated by using a frequency domain linearized Navier–Stokes solver retaining the effect of the effective gaps and the kinetic energy carried over to the downstream fin. A set of 3D steady RANS simulations has been carried out to reduce the uncertainty in the steady characteristics of the seal that are used to inform the flutter model. The simulations consider the static deformation due to the pressure and the centrifugal force through a set of numerical models with geometrical gap differences. The stability has been investigated in a large range of operating conditions. It is concluded that the analytical model can be used to quickly predict the modes susceptible to flutter, provided that the steady flow field and the effective running clearances of the seal are well predicted.

Publisher

ASME International

Subject

Mechanical Engineering

Reference22 articles.

1. Protection of Labyrinth Seals From Flexural Vibration;Alford;ASME J. Eng. Gas Turbines Power,1964

2. Protecting Turbomachinery From Unstable and Oscillatory Flows;Alford;ASME J. Eng. Gas Turbines Power,1967

3. Aeroelastic Instability in F100 Labyrinth Air Seals;Lewis;AIAA J. Aircraft,1979

4. Numerical and Experimental Studies of Labyrinth Seal Aeroelastic Instability;Miura;ASME J. Eng. Gas Turbines Power,2019

5. Development of a Novel Static Seal Flutter Rig;Hualca,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical and Experimental Study of Flutter in a Realistic Labyrinth Seal;International Journal of Turbomachinery, Propulsion and Power;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3