Numerical and Experimental Studies of Labyrinth Seal Aeroelastic Instability

Author:

Miura Toshimasa1,Sakai Naoto1

Affiliation:

1. Technical Institute, Kawasaki Heavy Industries, Co., Ltd, Akashi, Hyogo 6738666, Japan

Abstract

Abstract A labyrinth seal is commonly used to decrease the flow leakage loss between rotating and static components in aero engines. It is susceptible to aeroelastic instability because of its low stiffness. The aim of this study was to establish methods to predict and suppress it effectively. To achieve this, both numerical and experimental investigations are conducted using ansyscfx and ansys mechanical. These solvers are coupled to simulate the flutter precisely. Also, to assess the accuracy of the simulation qualitatively and quantitatively, a test rig is built. In the first part of this study, the accuracy of the numerical method is confirmed for several test cases with different seal clearance variations. Flutter inception is evaluated in detail for various pressure ratios and rotation speeds. The numerical results show good agreement with the experimental results. It is also confirmed that the aeroelastic instability is very sensitive to the seal clearance variations. These results show the same tendency as those in previous works. In the second part of this study, this paper tries to develop a flutter suppression method with higher leakage performance. This is achieved by changing the seal geometry. To detect the important geometric parameters, the contribution of each geometric component to aeroelastic instability is carefully analyzed. On the basis of this, the seal geometry is modified and its performance is evaluated. The optimized labyrinth seal shows good performance in terms of flow leakage and aeroelastic stability. Through this study, a new flutter suppression method is established.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference14 articles.

1. Protection of Labyrinth Seals From Flexural Vibration;ASME J. Eng. Power,1964

2. Aeroelastic Instability in Labyrinth Seals;ASME J. Eng. Gas Turbines Power,1968

3. Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention;ASME J. Eng. Gas Turbines Power,1981

4. Aeroelastic Instabilities in Labyrinth Air Seal Systems,1984

5. Aeroelastic Instability in F100 Labyrinth Air Seals;J. Aircr.,1979

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3