Affiliation:
1. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 e-mail:
2. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:
3. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:
Abstract
This work describes measurements and analysis of the turbulent consumption speeds, ST,GC, of H2/CO fuel blends. We report measurements of ST,GC at pressures and normalized turbulence intensities, urms'/SL,0, up to 20 atm and 1800, respectively, for a variety of H2/CO mixtures and equivalence ratios. In addition, we present correlations of these data using laminar burning velocities of highly stretched flames, SL,max, derived from quasi-steady leading points models. These analyses show that SL,max can be used to correlate data over a broad range of fuel compositions but do not capture the pressure sensitivity of ST,GC. We suggest that these pressure effects are more fundamentally a manifestation of non-quasi-steady behavior in the mass burning rate at the flame leading points.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献