Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Abstract
Abstract
Epoxy with ultra-high molecular weight polyethylene (UHMWPE) and MoS2 fillers was coated on a bearing steel (SAE 52100). Frictional and wear properties of the coated samples in sliding contact were investigated on a pin-on-disc tribometer under a normal load of 10 N and a linear sliding speed of 1 m/s against a bearing steel ball. The optimized coating composition (72 wt% Epoxy + 7 wt% hardener + 18 wt% UHMWPE + 3 wt% MoS2) showed highly improved tribological properties compared to pure epoxy and other epoxy-based composites. There was 75% reduction in the coefficient of friction (COF) in the dry interfacial condition (COF reduced from 0.2 to 0.05) over pure epoxy and 80% reduction with grease as the lubricant. The specific wear-rate of the composite was lower by five orders of magnitude over that of pure epoxy. Other mechanical properties such as hardness, tensile strength, and Young's modulus of the composite showed increments of 86%, 121%, and 43%, respectively, with respect to those of pure epoxy. 2–3 wt% of MoS2 had drastic effects on improving strength and reducing friction and wear of the composites. For dry sliding, initial abrasive and adhesive wear mechanisms led to transfer film formation on the steel counterface, and the shearing was mainly within the transfer film. For the grease-lubricated case, a thin layer of grease helped in easy shearing, and the transfer film formation was avoided. This epoxy-based composite will have applications as tribological coatings for journal bearings.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献