A Scalable Compact Additively Manufactured Molten Salt to Supercritical Carbon Dioxide Heat Exchanger for Solar Thermal Application

Author:

Tano Ines-Noelly1,Rasouli Erfan2,Ziev Tracey3,Seo Junwon4,Lamprinakos Nicholas4,Vaishnav Parth5,Rollett Anthony4,Wu Ziheng4,Narayanan Vinod6

Affiliation:

1. University of California Department of Mechanical and Aerospace Engineering, , Davis, 215 Sage Street, Suite 100, Davis, CA 95616

2. University of California UC Davis Western Cooling Efficiency Center, , Davis, 215 Sage Street, Suite 100, Davis, CA 95616

3. Department of Engineering and Public Policy, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, PA 15213-3815

4. Carnegie Mellon University Department of Materials Science and Engineering, , 5000 Forbes Avenue, Pittsburgh, PA 15213-3815

5. University of Michigan School for Environment and Sustainability, , 440 Church Street, Dana Building, Ann Arbor, MI 48109

6. University of California Department of Mechanical and Aerospace Engineering, , Davis, CA 95616-5294

Abstract

Abstract Design of an additively manufactured molten salt (MS) to supercritical carbon dioxide (sCO2) primary heat exchanger (PHE) for solar thermal power generation is presented. The PHE is designed to handle temperatures up to 720 °C on the MS side and an internal pressure of 200 bar on the sCO2 side. In the core, MS flows through a three-dimensional periodic lattice network, while sCO2 flows within pin arrays. The design includes integrated sCO2 headers located within the MS flow, allowing for a counterflow design of the PHE. The sCO2 headers are configured to enable uniform flow distribution into each sCO2 plate while withstanding an internal pressure of 200 bar and minimizing obstruction to the flow of MS around it. The structural integrity of the design is verified on additively manufactured (AM) 316 stainless steel sub-scale specimens. An experimentally validated, correlation-based sectional PHE core thermofluidic model is developed to study the impact of flow and geometrical parameters on the PHE performance, with varied parameters including the mass flowrate, surface roughness, and PHE dimensions. A process-based cost model is used to determine the impact of parameter variation on build cost. The model results show that a heat exchanger with a power density of 18.6 MW/m3 (including sCO2 header volume) and effectiveness of 0.88 can be achieved at a heat capacity rate ratio of 0.8. The impact of design and AM machine parameters on the cost of the PHE are assessed.

Funder

Solar Energy Technologies Program

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3