Dynamic Analysis of an Offshore Platform With Compressor Packages—Application of the Substructure Method

Author:

Zhao Ying1,Jia Xiaohan2,Zhang Yian1,Peng Xueyuan2

Affiliation:

1. School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, China e-mail:

2. School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, China e-mail:

Abstract

This paper presents the substructure-based dynamic analysis of an offshore platform with compressor packages. Three typical substructure methods, the Guyan condensation method, the fixed-interface component mode synthesis (CMS) method and the free-interface CMS method, were compared to identify the appropriate substructure method for this application. A mode truncation criterion was proposed to ensure the accuracy of the recommended substructure method. The results indicated that the free-interface CMS method could generate almost the same results as the fully coupled method and save more than 50% in calculation time and more than 60% in storage space. When the same amount of time was used, the free-interface CMS method obtained more accurate results than the fixed-interface CMS method and Guyan condensation method; thus, the use of this method for evaluating the dynamics of an offshore platform with compressor packages was recommended. The cutoff frequency of the substructure was suggested to be 1.25 times the highest frequency of interest when conducting a dynamic analysis of an offshore platform with compressor packages using the free-interface CMS method. In addition, the offshore platform is a flexible structure with low and dense mechanical natural frequencies (MNFs), with approximately 4500 orders vibration modes in the frequency range of 0–40 Hz, and the displacement response at the area around the compressor package exceeded the allowable value under the excitation of the compressor package.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3