Turbine Stator Well CFD Studies: Effects of Cavity Cooling Air Flow

Author:

Andreini Antonio1,Da Soghe Riccardo1,Facchini Bruno1,Zecchi Stefano2

Affiliation:

1. University of Florence, Florence, Italy

2. AvioGroup S.p.A., Rivalta di Torino, TO, Italy

Abstract

The improvement of the aerodynamic efficiency of gas turbine components is becoming more and more difficult to achieve. Nevertheless there are still some devices that could be improved to enhance engine performance. Further investigations on the internal air cooling systems, for instance, may lead to a reduction of cavities cooling air with a direct beneficial effect on engine performance. At the same time, further investigations on heat transfer mechanisms within turbine cavities may help to optimize cooling air flows saving engine life duration. This paper presents some CFD preliminary studies conducted on an two-stage axial turbine rig developed in a research programme on internal air systems funded by EU, named the Main Annulus Gas Path Interactions (MAGPI). Each turbine stage consists of 39 vanes and 78 rotating blades and the modelled domain includes both the main gas path of the two turbine stages and the second stator well. Pre experimental tests CFD computations were planned in order to point out the reliability of numerical models in the description of the flow patterns in the main annulus and in the cavities. Several computational meshes were considered with steady and unsteady approaches in order to assess the sensitivity to computational approach regarding the evaluation of the interactions between main annulus and disk cavities flows. Results were obtained for several cavities cooling air mass-flow rates and data were further analyzed to investigate the influence of the sealing flow inside the main annulus. MAGPI project is a 4 years Specific-Targeted-Research-Project (2007–2011) and its consortium includes six universities and nine gas turbines manufacturing companies. The project is focused on the analysis of interactions between primary and secondary air systems achieving a novel approach as these systems have, up to now, only been considered separately. In particular one of the tasks of the project will focus on heat transfer phenomena and delivering experimental data which will be used to validate the advanced design tools used by industries (CFD codes and correlative formulations).

Publisher

ASMEDC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3