CFD Analysis of the Flow Through Tube Banks of HRSG

Author:

Torresi Marco1,Saponaro Alessandro2,Camporeale Sergio Mario1,Fortunato Bernardo1

Affiliation:

1. Politecnico di Bari, Bari, Italy

2. Ansaldo Caldaie, Gioia del Colle, BA, Italy

Abstract

The prediction of the performance of HRSG (Heat Recovery Steam Generator) by means of CFD codes is of great interest, since HRSGs are crucial elements in gas turbine combined cycle power plants, and in CHP (combined heat and power) cycles. The determination of the thermo-fluid dynamic pattern in HRSGs is fundamental in order to improve the energy usage and limit the ineffectiveness due to non-homogeneous flow patterns. In order to reduce the complexity of the simulation of the fluid flow within the HRSG, it is useful modeling heat exchangers as porous media zones with properties estimated using pressure drop correlations for tube banks. Usually, air-side thermo-fluid dynamic characteristics of finned tube heat exchangers are determined from experimental data. The aim of this work is to develop a new procedure, capable to define the main porous-medium non-dimensional parameters (e.g., viscous and inertial loss coefficients; porosity; volumetric heat generation rate; etc...) starting from data obtained by means of accurate three-dimensional simulations of the flow through tube banks. Both finned and bare tube banks will be considered and results presented. The analysis is based on a commercial CFD code, Fluent v.6.2.16. In order to validate the proposed procedure, the simulation of an entire fired HRSG of the horizontal type developed by Ansaldo Caldaie for the ERG plant at Priolo (Italy) has been performed and results have been compared with their data.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation the effects of flow diverter configuration on flue gas flow characteristics in HRSG;AIP Conference Proceedings;2024

2. CFD Modelling of OWC Devices for Wave Energy Harnessing;Ocean Wave Energy Systems;2021-08-22

3. Evaluation of the efficiency of a heat recovery steam generator via computational simulations of off-design operation;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2020-10-12

4. The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device;Energies;2020-01-06

5. Biomass integrated gas turbine and ORC combined cycle: Layout and performance analysis;SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3