The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device

Author:

Gurnari LuanaORCID,Filianoti Pasquale G. F.ORCID,Torresi MarcoORCID,Camporeale Sergio M.ORCID

Abstract

Oscillating water column (OWC) devices, either fixed or floating, are the most common wave energy converter (WEC) devices. In this work, the fluid dynamic interaction between waves and a U-shaped OWC breakwater embedding a Wells turbine has been investigated through unsteady Computational Fluid Dynamic (CFD) simulations. The full-scale plant installed in the harbor of Civitavecchia (Italy) was numerically modeled. A two-dimensional domain was adopted to simulate the unsteady flow, both outside and inside the U-OWC device, including the air chamber and the oscillating flow inside the conduit hosting the Wells turbine. For the numerical simulation of the damping effect induced by the Wells turbine connected to the air chamber, a porous medium was placed in the computational domain, representing the conduit hosting the turbine. Several simulations were carried out considering periodic waves with different periods and amplitudes, getting a deep insight into the energy conversion process from wave to the turbine power output. For this purpose, the three main steps of the overall energy conversion process have been examined. Firstly, from the wave power to the power of the water oscillating flow inside the U-duct. Secondly, from the power of the oscillating water flow to the air pneumatic power. Finally, from the air pneumatic power to the Wells turbine power output. Results show that the U-OWC can capture up to 66% of the incoming wave power, in the case of a wave period close to the eigenperiod of the plant. However, only two-thirds of the captured energy flux is available to the turbine, being partially dissipated due to the losses in the U-duct and the air chamber. Finally, the overall time-average turbine power output is evaluated showing that it is strongly influenced by a suitable choice of the turbine characteristics (mainly geometry and rotational speed).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3