Affiliation:
1. Department of Engine Research, Korea Institute of Machinery and Materials, Daejeon 34103, South Korea e-mail:
2. Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea e-mail:
Abstract
Today, we are faced with the problems of global warming and fossil fuel depletion, and they have led to the enforcement of new emissions regulations. Direct-injection spark-ignition engines are a very promising technology that can comply with the new regulations. These engines offer the advantages of better fuel economy and lower emissions than conventional port-injection engines. The use of liquefied petroleum gas (LPG) as the fuel reduces carbon emissions because of its vaporization characteristics and the fact that it has lower carbon content than gasoline. An experimental study was carried out to investigate the combustion process and emission characteristics of a 2 l spray-guided LPG direct-injection engine under lean operating conditions. The engine was operated at a constant speed of 2000 rpm under 0.2 MPa brake mean effective pressure (BMEP), which corresponds to a common operation point of a passenger vehicle. Combustion stability, which is the most important component of engine performance, is closely related to the operation strategy and it significantly influences the degree of fuel consumption reduction. In order to achieve stable combustion with a stratified LPG mixture, an interinjection spark ignition (ISI) strategy, which is an alternative control strategy to two-stage injection, was employed. The effects of the compression ratio on fuel economy were also assessed; due to the characteristics of the stratified LPG mixture, the fuel consumption did not reduce when the compression ratio was increased.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献