Affiliation:
1. Engineering Materials Division, Naval Research Laboratory, Washington, D.C.
Abstract
Significant enhancement in fatigue crack propagation resistance and plane strain fracture toughness was obtained in commercial purity Ti-6Al-4V and Ti-6Al-6V-2Sn through microstructural modification. Alloys studied were in the form of 25.4 mm-thick plate with interstitial oxygen contents of 0.20 and 0.17 weight percent, respectively. Heat treatments were chosen to provide widely varied microstructures; these included a mill anneal, recrystallization anneal and a beta anneal. The most beneficial heat treatment for improving these crack tolerance properties was found to be the beta anneal. However, the beta anneal resulted in yield strength reductions of 9 to 14 percent, from levels associated with the original mill anneal. The recrystallization anneal provided significant enhancement of plane strain fracture toughness and marginal improvement in fatigue crack propagation resistance with negligible loss of yield strength.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献