Please wait a minute...
金属学报  2021, Vol. 57 Issue (11): 1455-1470    DOI: 10.11900/0412.1961.2021.00353
  综述 本期目录 | 过刊浏览 |
高强韧钛合金组成相成分和形态的精细调控
杨锐(), 马英杰, 雷家峰, 胡青苗, 黄森森
中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure
YANG Rui(), MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen
Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
Rui YANG, Yingjie MA, Jiafeng LEI, Qingmiao HU, Sensen HUANG. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. Acta Metall Sin, 2021, 57(11): 1455-1470.

全文: PDF(5147 KB)   HTML
摘要: 

结构钛合金已成为航空、航天、船舶等重大工程领域的关键材料,其强韧化,特别是增韧,是材料研究的核心。应用状态下大部分结构钛合金由α + β两相组成,精细调控两相的成分、比例及形态是深度优化合金强韧性的基础。本文综述了结构钛合金主要的强韧性优化手段,重点介绍了本团队在结构钛合金成分设计、塑性变形方式及显微结构调控方面开展的相关研究工作。研究表明,通过两相的成分优化设计,可提高hcp结构α相及α/β两相界面的协调变形,并抑制脆性ω和Ti3Al相的过量析出;两相微区成分调控同样可诱发α相形变孪晶及β相形变诱发相变,导致孪晶增塑增韧效应。此外,大量研究也表明,制备多尺度显微结构是实现钛合金增塑增韧的重要调控手段。在钛合金微区相成分和形态精确调控的基础上,提出了基于微区调控的高强高韧钛合金设计及工程化制备的研究方法。最后对不同应用领域的高强韧结构钛合金的技术发展进行了总结及展望。

关键词 钛合金强韧性相成分显微结构    
Abstract

Titanium alloys are key materials for applications in major engineering areas, such as aerospace and marine equipment. Studies on structural titanium alloys focus on strengthening and toughening the alloys, especially the latter. The mainstream structural titanium alloys comprise both α and β phases. The optimization of the strength and toughness balance relies on the control of the compositions, volume fractions, and morphologies of both phases. In this study, some recent advances along the above line are reviewed, focusing on studies on the composition design, plastic-deformation mechanism, and microstructure tuning. Rational design of the compositions of both phases improved the deformation coordination within the α phase and across the α/β interface, suppressed the precipitation of brittle ω and α2 phases, and resulted in improved plasticity and toughness through the α-deformation twin and β-deformation-triggered phase transformation. The multiscale microstructure enhanced the strength and toughness of the titanium alloy. Using the abovementioned approaches, a series of titanium alloys with an improved strength-toughness combination were developed and fabricated. Finally, an attempt was made to predict the prospect of technology development in the field of high-strength and high-toughness titanium alloys for various applications.

Key wordstitanium alloy    strength and toughness    phase composition    microstructure
收稿日期: 2021-08-23     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2016YFC0304200);国家自然科学基金项目(51871225)
图1  第一性原理计算得到的α-Ti-xAl二元合金柱面及基面<a>位错滑移临界剪切应力随Al含量的变化,以及实验测得的Ti-xAl合金屈服强度及断裂韧性随Al含量的变化[7]
AlloyModulus / GPaModulus ratio
EαGαEβGβEβ / EαGβ / Gα
Ti64159.9963.7071.0625.550.440.40
Alloy-1159.6064.1183.5730.470.520.48
Alloy-2155.8161.6788.5532.370.570.52
表1  采用第一原理精确Muffin-Tin轨道方法计算得到的不同合金α和β相的模量
图2  Ti-10V-2Fe-3Al合金单晶微柱变形后的TEM像[18](a) low-magnification bright field (BF) image (The inset is corresponding SEM appearance)(b) [110]β-zone selected area diffraction pattern (SADP) of framed area in Fig.2a(c, d) dark field (DF) images taken from (0001)ω2 and (0001)ω1 diffraction spots of Fig.2b, respectively (Insets show the crystal orientation of ω2 and ω1)
图3  Ti-3Al-5Mo-4.5V合金分别经两相区固溶、固溶+时效热处理后的相组成表征
图4  Ti-3Al-5Mo-4.5V合金不同热处理条件下的真应力-真应变曲线及加工硬化率曲线
图5  多种二元钛合金中ω-β相能量差随成分x的变化[21,22]
图6  Ti-6Al和Ti-8Al合金中Al元素团簇形貌及团簇内Al元素浓度统计分布[39]
图7  经不同时效处理后的光滑及缺口Ti-8Al合金拉伸样品的载荷-位移曲线[40](a) samples without notch(b) samples with notch (The dips in the curves being caused by stress relaxation as loading is halted)
图8  时效168 h后Ti-8Al合金在原位拉伸条件下缺口处的塑性变形特征[40](a) 84 μm (b) 164 μm (c) 364 μm (d) after fracture
图9  Ti64合金在α + β两相区不同温度热处理后的初生α相(αp)、β转变区域(βt) Al和V元素浓度[44]
图10  Ti64合金在两相区920℃保温5 min后的显微组织和沿图示箭头方向的Al、V元素浓度分布[44](a) microstructure with the arrowed line indicating measurement locations and direction(b) composition profiles of Al and V showing local segregation of Al near the αp /βt boundaries indicated by the dashed lines
图11  相场计算模拟Ti64合金在两相区热处理过程中αp/βt界面附近成分演化过程[44]
图12  Ti64合金在两相区920℃保温不同时间条件下的显微组织和Al、V元素浓度分布[44]
图13  具有魏氏组织的Ti64合金裂纹尖端塑性区内的大范围形变孪晶及其EBSD表征分析[51](a) four primary twinning variants in single α colony(b) band contrast map with the red line representing {101ˉ2} twining plane(c) 3D crystal viewer of the corresponding parent and deformation twinning(d) pole figures of {101ˉ2} twinning plane of parent grain and the four twinning variants(e) schematic representation of the crystallo-graphic relationship between the parent grain and twin variants
图14  Ti-3Al-5Mo-4.5V合金在两相区不同温度固溶后的真应力-真应变曲线及加工硬化率曲线[42](a) 700oC (b) 750oC (c) 800oC (d) 880oC
图15  不同热处理温度下Ti-3Al-5Mo-4.5V合金β相的主导塑性变形方式[42]
图16  魏氏组织钛合金疲劳裂纹尖端塑性区形变特征示意图[71]
图17  基于微区调控的多组元、多相、多尺度结构高强高韧钛合金材料研发及工程化应用流程示意图[39,51,72]
1 Wang L, Zheng Z, Phukan H, et al. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy [J]. Acta Mater., 2017, 132: 598
2 Lin P, Hao Y G, Zhang B Y, et al. Tension-compression asymmetry in yielding and strain hardening behavior of CP-Ti at room temperature [J]. Mater. Sci. Eng., 2017, A707: 172
3 Mine Y, Matsuzaki Y, Takashima K. Anisotropy of strength and plasticity in single-colony lamellar structure of Ti-6Al-4V alloy [J]. Scr. Mater., 2020, 177: 223
4 Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
5 Zunger A, Wei S H, Ferreira L G, et al. Special quasirandom structures [J]. Phys. Rev. Lett., 1990, 65: 353
6 Wei S H, Ferreira L G, Bernard J E, et al. Electronic properties of random alloys: Special quasirandom structures [J]. Phys. Rev., 1990, 42B: 9622
7 Yu H, Cao S, Youssef S S, et al. Generalized stacking fault energies and critical resolved shear stresses of random α-Ti-Al alloys from first-principles calculations [J]. J. Alloys Compd., 2021, 850: 156314
8 Vitos L. Total-energy method based on the exact Muffin-Tin orbitals theory [J]. Phys. Rev., 2001, 64B: 014107
9 Vitos L. Computational Quantum Mechanics for Materials Engineers: the EMTO Method and Applications [M]. London: Springer, 2007: 13
10 Wu S Q. ω phase and its behavior in Ti-Nb-Pd alloys [D]. Beijing: The University of Chinese Academy of Sciences, 2013
10 吴松全. Ti-Nb-Pd合金中ω相及其微观行为 [D]. 北京: 中国科学院大学, 2013
11 Devaraj A, Nag S, Srinivasan R, et al. Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J]. Acta Mater., 2012, 60: 596
12 Dey G K, Tewari R, Banerjee S, et al. Formation of a shock deformation induced ω phase in Zr 20 Nb alloy [J]. Acta Mater., 2004, 52: 5243
13 Xue Q. Effects of β phase stability on microstructure evolution, mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy [D]. Shenyang: Northeastern University, 2017
13 薛 琦. β相稳定性对双相Ti-3Al-5Mo-4.5V合金显微组织、力学性能及变形机制影响的研究 [D]. 沈阳: 东北大学, 2017
14 Liu H H, Niinomi M, Nakai M, et al. Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O [J]. Acta Mater., 2016, 106: 162
15 Hsiung L M, Lassila D H. Shock-induced omega phase in tantalum [J]. Scr. Mater., 1998, 38: 1371
16 Coakley J, Vorontsov V A, Jones N G, et al. Precipitation processes in the Beta-Titanium alloy Ti-5Al-5Mo-5V-3Cr [J]. J. Alloys Compd., 2015, 646: 946
17 Zheng Y F, Choudhuri D, Alam T, et al. The role of cuboidal ω precipitates on α precipitation in a Ti-20V alloy [J]. Scr. Mater., 2016, 123: 81
18 Chen W, Zhang J Y, Cao S, et al. Strong deformation anisotropies of ω-precipitates and strengthening mechanisms in Ti-10V-2Fe-3Al alloy micropillars: Precipitates shearing vs precipitates disordering [J]. Acta Mater., 2016, 117: 68
19 Lai M J, Li T, Raabe D. ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy [J]. Acta Mater., 2018, 151: 67
20 Lai M J, Tasan C C, Raabe D. Deformation mechanism of ω-enriched Ti-Nb-based gum metal: Dislocation channeling and deformation induced ω-β transformation [J]. Acta Mater., 2015, 100: 290
21 Hu Q M, Li S J, Hao Y L, et al. Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations [J]. Appl. Phys. Lett., 2008, 93: 121902
22 Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM = V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys [J]. Mater. Des., 2016, 110: 80
23 Hu Q M, Vitos L, Yang R. Theoretical investigation of the ω-related phases in TiAl-Nb/Mo alloys [J]. Phys. Rev., 2014, 90B: 054109
24 Wu H, Fan G H, Geng L, et al. Nanoscale origins of the oriented precipitation of Ti3Al in TiAl systems [J]. Scr. Mater., 2016, 125: 34
25 Li D, Liu Y Y, Wan X J. On the thermal stability of Ti alloys Ⅰ: The electron concentration rule for formation of Ti3X-phase [J]. Acta Metall. Sin., 1984, 20: A375
25 李 东, 刘羽寅, 万晓景. 钛合金热稳定性研究Ⅰ: Ti3X相形成的电子浓度规律 [J]. 金属学报, 1984, 20: A375
26 Li D, Liu Y Y. On the thermal stability of Ti alloys Ⅱ: The behaviour of transition elements in Ti3X-phase formation [J]. Acta Metall. Sin., 1984, 20: A384
26 李 东, 刘羽寅. 钛合金热稳定性研究Ⅱ: 过渡族元素在Ti3X相形成中的行为 [J]. 金属学报, 1984, 20: A384
27 Li D, Wan X J. On the thermal stability of Ti alloys Ⅲ: The criterion for thermal stability and its application [J]. Acta Metall. Sin., 1984, 20: A391
27 李 东, 万晓景. 钛合金热稳定性研究Ⅲ: 热稳定性判据及其应用 [J]. 金属学报, 1984, 20: A391
28 Zhang J, Li D. Precipitation of α2 phase in α + β solution-treated and air-cooled Ti-Al-Sn-Zr-Mo-Si-Nd alloys [J]. J. Mater. Sci. Technol., 2001, 17: 315
29 Zhang J, Li D. Preferred precipitation of ordered α2 phase at dislocations and boundaries in near-α titanium alloys [J]. Mater. Sci. Eng., 2003, A341: 229
30 Zhang X D, Wiezorek J M K, Baeslack W A, et al. Precipitation of ordered α2 phase in Ti-6-22-22 alloy [J]. Acta Mater., 1998, 46: 4485
31 Zhang R P, Zhao S T, Ophus C, et al. Direct imaging of short-range order and its impact on deformation in Ti-6Al [J]. Sci. Adv., 2019, 5: eaax2799
32 Lunt D, Busolo T, Xu X, et al. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy [J]. Acta Mater., 2017, 129: 72
33 Radecka A, Coakley J, Vorontsov V A, et al. Precipitation of the ordered α2 phase in a near-α titanium alloy [J]. Scr. Mater., 2016, 117: 81
34 Lunt D, Xu X, Busolo T, et al. Quantification of strain localisation in a bimodal two-phase titanium alloy [J]. Scr. Mater., 2018, 145: 45
35 Fitzner A, Prakash D G L, Da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341
36 Radecka A, Bagot P A J, Martin T L, et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V [J]. Acta Mater., 2016, 112: 141
37 Castany P, Pettinari-Sturmel F, Douin J, et al. TEM quantitative characterization of short-range order and its effects on the deformation micromechanims in a Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2017, A680: 85
38 Youssef S S, Zheng X D, Qi M, et al. Effects of Al content and α2 precipitation on the fatigue crack growth behaviors of binary Ti-Al alloys [J]. Mater. Sci. Eng., 2021, A819: 141513
39 Youssef S S, Zheng X D, Ma Y J, et al. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al binary alloys: A comparative investigation [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 710
40 Youssef S S, Zheng X D, Huang S S, et al. Precipitation behavior of α2 phase and its influence on mechanical properties of binary Ti-8Al alloy [J]. J. Alloys Compd., 2021, 871: 159577
41 Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34: 782
42 Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507
43 Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
44 Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
45 Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
45 黄森森, 马英杰, 张仕林等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
46 Yu Q, Jiang Y Y, Wang J. Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension-compression in the [101¯0] direction [J]. Scr. Mater., 2015, 96: 41
47 Liao X Z, Wang J, Nie J F, et al. Deformation twinning in hexagonal materials [J]. MRS Bull., 2016, 41: 314
48 Wang J, Zhang X H. Twinning effects on strength and plasticity of metallic materials [J]. MRS Bull., 2016, 41: 274
49 Chapuis A, Xin Y C, Zhou X J, et al. {101¯2} twin variants selection mechanisms during twinning, re-twinning and detwinning [J]. Mater. Sci. Eng., 2014, A612: 431
50 El Kadiri H, Barrett C D, Wang J, et al. Why are {101¯2} twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
51 Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with Widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
52 Zheng X D, Zheng S J, Wang J, et al. Twinning and sequential kinking in lamellar Ti-6Al-4V alloy [J]. Acta Mater., 2019, 181: 479
53 Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅰ. Characterization and mechanical testing [J]. Acta Mater., 2007, 55: 3681
54 Lani F, Furnémont Q, van Rompaey T, et al. Multiscale mechanics of TRIP-assisted multiphase steels: Ⅱ. Micromechanical modelling [J]. Acta Mater., 2007, 55: 3695
55 Yang Y, Castany P, Cornen M, et al. Characterization of the martensitic transformation in the superelastic Ti-24Nb-4Zr-8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis [J]. Acta Mater., 2015, 88: 25
56 Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects [J]. Acta Mater., 2013, 61: 6406
57 Zhang J Y, Fu Y Y, Wu Y J, et al. Hierarchical {332}<113> twinning in a metastable β Ti-alloy showing tolerance to strain localization [J]. Mater. Res. Lett., 2020, 8: 247
58 Zhang J Y, Qian B N, Wu Y J, et al. A kink-bands reinforced titanium alloy showing 1.3 GPa compressive yield strength: Towards extra high-strength/strain-transformable Ti alloys [J]. Mater. Sci. Technol., 2021, 74: 21
59 Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures [J]. Mech. Mater., 2004, 36: 161
60 Nalla R K, Ritchie R O, Boyce B L, et al. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures [J]. Metall. Mater. Trans., 2002, 33A: 899
61 Yoder G R, Cooley L A, Crooker T W. Observations on microstructurally sensitive fatigue crack growth in a Widmanstätten Ti-6Al-4V alloy [J]. Metall. Trans., 1977, 8A: 1737
62 Yoder G R, Cooley L A, Crooker T W. Enhancement of fatigue crack growth and fracture resistance in Ti-6Al-4V and Ti-6Al-6V-2Sn through microstructural modification [J]. J. Eng. Mater. Technol., 1977, 99: 313
63 Feng X, Qiu J K, Ma Y J, et al. Influence of processing conditions on microstructure and mechanical properties of large thin-wall centrifugal Ti-6Al-4V casting [J]. J. Mater. Sci. Technol., 2016, 32: 362
64 Ma Y J, Liu J R, Lei J F, et al. The turning point in Paris region of fatigue crack growth rate in titanium alloy [J]. Acta Metall. Sin., 2008, 44: 973
64 马英杰, 刘建荣, 雷家峰等. 钛合金疲劳裂纹扩展速率Paris区中的转折点 [J]. 金属学报, 2008, 44: 973
65 Ma Y J, Li J W, Lei J F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46: 1086
65 马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46: 1086
66 Ma Y J, Wang D C, Wang H W, et al. Factors influencing fracture toughness of TC4ELI alloy [J]. Chin. J. Nonferrous Met., 2010, 20: S414
66 马英杰, 王鼎春, 王红武等. 影响TC4ELI合金断裂韧性的因素 [J]. 中国有色金属学报, 2010, 20: S414
67 Hammouda M M I, Sallam H E M, Osman H G. Significance of crack tip plasticity to early notch fatigue crack growth [J]. Int. J. Fatigue, 2004, 26: 173
68 Toyosada M, Gotoh K, Niwa T. Fatigue crack propagation for a through thickness crack: A crack propagation law considering cyclic plasticity near the crack tip [J]. Int. J. Fatigue, 2004, 26: 983
69 Toribio J, Kharin V. Large crack tip deformations and plastic crack advance during fatigue [J]. Mater. Lett., 2007, 61: 964
70 Xiong Y, Hu X X, Katsuta J, et al. Influence of compressive plastic zone at the crack tip upon fatigue crack propagation [J]. Int. J. Fatigue, 2008, 30: 67
71 Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with Widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
72 Ma Y J, Liu J R, Lei J F, et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chin. J. Mater. Res., 2008, 22: 555
72 马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22: 555
73 Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater Des., 2015, 83: 499
74 Li C L, Zou L N, Fu Y Y, et al. Effect of heat treatments on microstructure and property of a high strength/toughness Ti-8V-1.5Mo-2Fe-3Al alloy [J]. Mater. Sci. Eng., 2014, A616: 207
75 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
76 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
77 Zhang Q, Guo D F, Zhang G S, et al. An extraordinary enhancement of wear resistance in a multi-modal-laminated alloy [J]. Mater Des., 2016, 91: 53
78 Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy [J]. J. Alloys Compd., 2017, 693: 582
79 Wang H, Zhao Q Y, Xin S W, et al. Microstructural morphology effects on fracture toughness and crack growth behaviors in a high strength titanium alloy [J]. Mater. Sci. Eng., 2021, A821: 141626
80 Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength [J]. Nat. Commun., 2016, 7: 11176
81 Dong R F, Li J S, Kou H C, et al. ω-assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy [J]. J. Mater. Sci. Technol., 2020, 44: 24
82 Song B, Xiao W L, Fu Y, et al. Role of nanosized intermediate phases on α precipitation in a high-strength near β titanium alloy [J]. Mater. Lett., 2020, 275: 128147
83 Zhu W G, Lei J, Tan C S, et al. A novel high-strength β-Ti alloy with hierarchical distribution of α-phase: The superior combination of strength and ductility [J]. Mater. Des., 2019, 168: 107640
84 Zhu W G, Lei J, Su B, et al. The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V [J]. Mater. Sci. Eng., 2020, A782: 139248
85 Cann J L, De Luca A, Dunand D C, et al. Sustainability through alloy design: Challenges and opportunities [J]. Prog. Mater. Sci., 2021, 117: 100722
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[4] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[5] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[6] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[7] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[8] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[9] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[10] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[11] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[12] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[13] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[14] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[15] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.