Heat Transfer and Thermodynamic Analyses of Some Typical Encapsulated Ice Geometries During Discharging Process

Author:

MacPhee David1,Dincer Ibrahim1

Affiliation:

1. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada

Abstract

This study deals with the process of melting in some typical encapsulated ice thermal energy storage (TES) geometries. Cylindrical and slab capsules are compared with spherical capsules when subjected to a flowing heat transfer fluid (HTF). The effect of inlet HTF temperature and flow rate as well as the reference temperatures are investigated, and the resulting solidification and melting times, energy efficiencies, and exergy efficiencies are documented. Using ANSYS GAMBIT and FLUENT 6.0 softwares, all geometries are created, and the appropriate boundary and initial conditions are selected for the finite volume solver to proceed. Sufficient flow parameters are monitored during transient solutions to enable the calculation of all energy and exergy efficiencies. The energetically most efficient geometric scenario is obtained for the slab geometry, while the spherical geometry exergetically achieves the highest efficiencies. The difference between the two results is mainly through the accounting of entropy generation and exergy destroyed, and the largest mode of thermal exergy loss is found to be through entropy generation resulting from heat transfer accompanying phase change, although viscous dissipation is included in the analysis. All efficiency values tend to increase with decreasing HTF flow rate, but exergetically the best scenario appears to be for the spherical capsules with low inlet HTF temperature. Energy efficiency values are all well over 99%, while the exergy efficiency values range from around 72% to 84%, respectively. The results indicate that energy analyses, while able to predict viscous dissipation losses effectively, cannot correctly quantify losses inherent in cold TES systems, and in some instances predict higher than normal efficiencies and inaccurate optimal parameters when compared with exergy analyses.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference25 articles.

1. Performance of Phase Change Materials in a Horizontal Annulus of a Double Pipe Heat Exchanger in a Water Circulating Loop;Balikowski;ASME J. Heat Transfer

2. Latent Heat Storage in a Two-Phase Thermosyphon Solar Water Heater;Lee;ASME J. Sol. Energy Eng.

3. Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials;Saha;ASME J. Heat Transfer

4. IESO, 2008, “Ontario Demand and Market Prices, August 8, 2008,” http://www.ieso.ca/imoweb/siteShared/demand_price.asp?sid=ic.

5. Energetic, Environmental and Economic Aspects of Thermal Energy Storage Systems for Cooling Capacity;Dincer;Appl. Therm. Eng.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3