Order Reduction of Parametrically Excited Linear and Nonlinear Structural Systems

Author:

Deshmukh Venkatesh1,Butcher Eric A.1,Sinha S. C.2

Affiliation:

1. Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775

2. Nonlinear Systems Research Laboratory, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849

Abstract

Order reduction of parametrically excited linear and nonlinear structural systems represented by a set of second order equations is considered. First, the system is converted into a second order system with time invariant linear system matrices and (for nonlinear systems) periodically modulated nonlinearities via the Lyapunov-Floquet transformation. Then a master-slave separation of degrees of freedom is used and a relation between the slave coordinates and the master coordinates is constructed. Two possible order reduction techniques are suggested. In the first approach a constant Guyan-like linear kernel which accounts for both stiffness and inertia is employed with a possible periodically modulated nonlinear part for nonlinear systems. The second method for nonlinear systems reduces to finding a time-periodic nonlinear invariant manifold relation in the modal coordinates. In the process, closed form expressions for “true internal” and “true combination” resonances are obtained for various nonlinearities which are generalizations of those previously reported for time-invariant systems. No limits are placed on the size of the time-periodic terms thus making this method extremely general even for strongly excited systems. A four degree-of-freedom mass- spring-damper system with periodic stiffness and damping as well as two and five degree-of-freedom inverted pendula with periodic follower forces are used as illustrative examples. The nonlinear-based reduced models are compared with linear-based reduced models in the presence and absence of nonlinear resonances.

Publisher

ASME International

Subject

General Engineering

Reference14 articles.

1. Reduction of Stiffness and Mass Matrices;Guyan;AIAA J.

2. Comment on ‘Reduction of Structural Frequency Equations’;Flax;AIAA J.

3. Accurate Reduction of Stiffness and Mass Matrices for Vibration Analysis and Rationale for Selecting Master Degrees of Freedom;Downs;ASME J. Mech. Des.

4. Modal Analysis-Based Reduced-Order Models for Nonlinear Structures—An Invariant Manifold Approach;Shaw;Shock Vib.

5. On the Reduction of Nonlinear Structural Dynamics Models;Burton;J. Vib. Control

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3