Shift-Independent Model Reduction of Large-Scale Second-Order Mechanical Structures

Author:

Mahmoodi Masih1,Behdinan Kamran1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada e-mail:

Abstract

Nonmodal model order reduction (MOR) techniques present accurate and efficient ways to approximate input–output behavior of large-scale mechanical structures. In this regard, Krylov-based model reduction techniques for second-order mechanical structures are typically known to require a priori knowledge of the original system parameters, such as expansion points (or eigenfrequencies). The calculation of the eigenfrequencies of the original finite-element (FE) model can be significantly time-consuming for large-scale structures. Existing iterative rational Krylov algorithm (IRKA) addresses this issue by iteratively updating the expansion points for first-order formulations until convergence criteria are achieved. Motivated by preserving the model properties of second-order systems, this paper extends the IRKA method to second-order formulations, typically encountered in mechanical structures. The proposed second-order IRKA method is implemented on a large-scale system as an example and compared with the standard Krylov and Craig-Bampton reduction techniques. The results show that the second-order IRKA method provides tangibly reduced error for a multi-input-multi-output (MIMO) mechanical structure compared to the Craig-Bampton. In addition, unlike the standard Krylov methods, the second-order IRKA does not require the information on expansion points, which eliminates the need to perform a modal analysis on the original structure. This can be especially advantageous for large-scale systems where calculations of the eigenfrequencies of the original structure can be computationally expensive. For such large-scale systems, the proposed MOR technique can lead to significant reductions of the computational time.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3