Finite Element and Neural Network Modeling of Viscoelastic Annular Extrusion

Author:

Huang Han-Xiong1,Miao Yan-Sheng1

Affiliation:

1. Center for Polymer Processing Equipment and Intellectualization, College of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, P.R.C.

Abstract

Plastics blow molding has grown rapidly for the past couple of decades. Annular parison extrusion is a critical stage in extrusion blow molding. In this work, numerical simulations on the parison extrusion were performed using finite element (FE) method and the Kaye-Bernstein-Kearsley-Zapas type constitutive equation. A total of 100 simulations was carried out by changing the extrusion die inclination angle, die gap, and parison length. Then a backpropagation artificial neural network (ANN) was proposed as a tool for modeling the parison extrusion using the numerical simulation results. The network architecture determination and the training process of the ANN model were discussed. The predictive ability of the ANN model was examined through several sets of FE simulation results different from those utilized in the training stage. The effects of the die inclination angle, die gap, and parison length on the parison swells can be predicted using the ANN model. The results showed that the die gap has a smaller effect on the diameter swell but a greater effect on the thickness swell. Both diameter and thickness swells increase as the die inclination angle increases. The hybrid method combining the FE and ANN can shorten the time for the predictions drastically and help search out the processing conditions and/or die geometric parameters to obtain optimal parison thickness distributions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3