Adjustable-Smooth Polynomial Command-Shaping Control With Linear Hoisting

Author:

Alghanim Khalid A.1,Majeed Majed A.1,Alhazza Khaled A.1

Affiliation:

1. Department of Mechanical Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait e-mail:

Abstract

Great amount of work has been dedicated to eliminate residual vibrations in rest-to-rest motion. Considerable amount of these methods is based on convolving a general input signal with a sequence of timed impulses. These impulses usually have large jumps in their profiles and are chosen depending on the system modal parameters. Furthermore, classical input shaping methods are usually used for constant cable length and are sensitive to any change in the system parameters. To overcome these limitations, polynomial command shapers with adjustable maneuvering time are proposed. The equation of motion of a simple pendulum with the effect of hoisting is derived, linearized, and solved in order to eliminate residual vibrations in rest-to-rest maneuvers. Several cases including smooth, semi-smooth and unsmooth continuous shapers are simulated numerically and validated experimentally on an experimental overhead crane. Numerical and experimental results show that the proposed polynomial command shaper eliminates residual vibrations effectively. The effect of linear hoisting is also included and discussed. To enhance the shaper performance, extra parameters are added to the polynomial function to reduce shaper sensitivity. Results show that the effect of adding these parameters greatly enhances the shaper performance.

Publisher

ASME International

Subject

General Engineering

Reference30 articles.

1. Vibration Control Using Input Shaping and Adaptive Positive Position Feedback;J. Guid. Control Dyn.,2011

2. Dynamics and Control of Cranes: A Review;J. Vib. Control,2003

3. Shaping Command Inputs to Minimize Unwanted Dynamics,1990

4. Methods and Apparatus for Minimizing Unwanted Dynamics in a Physical System,1997

5. Comparison of Robust Input Shapers;J. Sound Vib.,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3