The Prediction of Three-Dimensional Discrete-Hole Cooling Processes—Part 1: Laminar Flow

Author:

Bergeles G.1,Gosman A. D.1,Launder B. E.1

Affiliation:

1. Mechanical Engineering Department, Imperial College, London, England

Abstract

The paper describes the application of a three-dimensional finite-difference procedure to the problem of predicting the flow and thermal fields arising from the injection of fluid in discrete jets through a wall past which an external stream is flowing. The numerical scheme is of the “partially parabolic” type originated by D. B. Spalding. Predictions of mean velocity and temperature for laminar flow are provided for the cases of a single row of holes inclined at 90, 45, and 35 deg to the plate surface and for a surface with multiple rows of holes in a staggered array. These specifications are for a uniform density flow and a uniform velocity external stream. A final example is presented, simulating typical operating conditions for a gas turbine blade cooled with a single row of holes aligned at 30 deg to the blade surface. Strong streamwise accelerations and density gradients are present. The results show, as has been observed experimentally, that due to the strong acceleration the lateral rate of spread is diminished. Moreover a counter-rotating vortex pair is created downstream from the hole which shifts the minimum effectiveness away from the mid-plane between the holes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using ANSYS to Study the Supply Geometry Influence on Cooling Efficiency;2022 VI International Conference on Information Technologies in Engineering Education (Inforino);2022-04-12

2. Numerical investigation of the effectiveness of effusion cooling for plane multi-layer systems with different base-materials;Frontiers of Energy and Power Engineering in China;2009-06-02

3. Investigation of film cooling effectiveness and heat transfer coefficient for rectangular holes with two rows;Aircraft Engineering and Aerospace Technology;2009-01-23

4. Experimental and numerical investigation of film cooling effectiveness for rectangular injection holes;Aircraft Engineering and Aerospace Technology;2007-10-30

5. Double-Jet Ejection of Cooling Air for Improved Film Cooling;Journal of Turbomachinery;2006-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3