A Fractional Derivative Model for Rubber Spring of Primary Suspension in Railway Vehicle Dynamics

Author:

Zhang Dawei1,Zhu Shengyang1

Affiliation:

1. State Key Laboratory of Traction Power, Train and Track Research Institute, Southwest Jiaotong University, Chengdu 610031, China e-mail:

Abstract

This paper presents a nonlinear rubber spring model for the primary suspension of the railway vehicle, which can effectively describe the amplitude dependency and the frequency dependency of the rubber spring, by taking the elastic force, the fractional derivative viscous force, and nonlinear friction force into account. An improved two-dimensional vehicle–track coupled system is developed based on the nonlinear rubber spring model of the primary suspension. Nonlinear Hertz theory is used to couple the vehicle and track subsystems. The railway vehicle subsystem is regarded as a multibody system with ten degrees-of-freedom, and the track subsystem is treated as finite Euler–Bernoulli beams supported on a discrete–elastic foundation. Mechanical characteristic of the rubber spring due to harmonic excitations is analyzed to clarify the stiffness and damping dependencies on the excitation frequency and the displacement amplitude. Dynamic responses of the vehicle–track coupled dynamics system induced by the welded joint irregularity and random track irregularity have been performed to illustrate the difference between the Kelvin–Voigt model and the proposed model in the time and frequency domain.

Funder

National Natural Science Foundation of China

Dalian University of Technology

Southwest Jiaotong University

Department of Science and Technology of Sichuan Province

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3