Affiliation:
1. Institute of Automobile and Rail Transit, Luoyang Polytechnic, Luoyang, China
2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China
Abstract
The dynamic mechanical properties of rubber spring have great influence on the vehicle dynamic performance, so the accurate description of the mechanical properties of rubber spring has always been the focus of the train dynamics. Among the mechanical properties of rubber springs, the study of non-hyperelastic properties are the most difficult and complex. Therefore, this paper mainly studies non-hyperelastic forces. Based on the experimental data of rubber springs, an elliptic analysis model is derived to describe the non-hyperelastic properties of rubber springs. On the basis of this model, a modified model based on time change and a modified model based on displacement change are also proposed. The results show that the ellipse analysis model is simple, but the error of calculation is large; the calculation precision of time correction model is high, but the calculation process is complex; the displacement correction model is between the previous two models, with both accuracy and convenience. Compared with other models, the displacement correction model has great advantages, which can improve the accuracy of the calculation of train dynamics. It is suggested to adopt the rubber spring displacement correction model in engineering application.
Funder
Youth Program of National Natural Science Foundation of China
key technologies research and development program
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献