Physically Based Rendering of Animated Point Clouds for EXtended Reality

Author:

Rossoni Marco1,Pozzi Matteo2,Colombo Giorgio1,Gribaudo Marco2,Piazzolla Pietro1

Affiliation:

1. Politecnico di Milano Department of Mechanical Engineering, , Via La Masa 1, 20156 Milano , Italy

2. Politecnico di Milano Department of Electronics, Information and Bioengineering, , Via Giuseppe Ponzio 34, 20133 Milano , Italy

Abstract

Abstract Point cloud 3D models are gaining increasing popularity due to the proliferation of scanning systems in various fields, including autonomous vehicles and robotics. When employed for rendering purposes, point clouds are typically depicted with their original colors acquired during the acquisition, often without taking into account the lighting conditions of the scene in which the model is situated. This can result in a lack of realism in numerous contexts, especially when dealing with animated point clouds used in eXtended reality applications, where it is desirable for the model to respond to incoming light and seamlessly blend with the surrounding environment. This paper proposes the application of physically based rendering (PBR), a rendering technique widely used in real-time computer graphics applications, to animated point cloud models for reproducing specular reflections, and achieving a photo-realistic and physically accurate look under any lighting condition. To achieve this, we first explore the extension of commonly used animated point cloud formats to incorporate normal vectors and PBR parameters, like roughness and metalness. Additionally, the encoding of the animated environment maps necessary for the PBR technique is investigated. Then, an animated point cloud model is rendered with a shader implementing the proposed PBR method. Finally, we compare the outcomes of this PBR pipeline with traditional renderings of the same point cloud produced using commonly used shaders, taking into account different lighting conditions and environments. Through these comparisons, we demonstrate how the proposed PBR method enhances the visual integration of the point cloud with its surroundings. Furthermore, it will be shown that using this rendering technique, it is possible to render different materials, by exploiting the features of PBR and the encoding of the surrounding environment.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3