Analysis of Fouling on Nanocomposite Surfaces in Plate Heat Exchangers

Author:

Li Wei1,Zhu Liyao1,Wang Qiugang2,Ding Zhikou1,Zhao Limin3,Sherif S. A.4

Affiliation:

1. Zhejiang University Department of Energy Engineering, , 38 Zheda Road, Hangzhou 310027 , China

2. Shihezi University College of Water Conservancy and Architecture Engineering, , Shihezi 832000, Xinjiang , China

3. Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals , Fushun 113001 , China

4. University of Florida Department of Mechanical and Aerospace Engineering, , 232 MAE Building. B, P.O. Box 116300, Gainesville, FL 32611

Abstract

Abstract In the application of plate heat exchangers (PHEs), fouling has always been an intractable problem that results in decreasing the heat transfer efficiency and increasing the associated pressure drop. Plate heat exchangers are employed in solar energy systems to transfer the solar heat to a working fluid that can be used for heating or power generation applications depending on the amount of heat collected per unit surface area. The work upon which this article partially reports presents analyses of the factors influencing the antifouling performance of two types of nanocomposite surfaces, namely, Ni-P-PTFE and Ni-P-TiO2. In this work, the flow and thermal fields in PHEs are numerically analyzed. Then, experiments are conducted to verify the numerical results. The influencing factors of fouling are theoretically analyzed employing the Kern–Seaton fouling model and the von Kármán analogy. Results of the work performed here show that the friction factor f, the mass transfer coefficient Km, and the shear stress τs of the Ni-P-TiO2 and Ni-P-PTFE nanocomposite surfaces all decrease compared with an uncoated surface. Results also indicate that the deposit bond strength ζ of the Ni-P-TiO2 and Ni-P-PTFE coatings decrease by 42.1% and 30.5%, respectively. Furthermore, the Ni-P-TiO2 coating was found to increase the probability P of sticking to the surface by 24.9%, while the Ni-P-PTFE coating decreased the sticking probability P by 2.7%.

Funder

National Natural Science Foundations of China

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3