Continuous Mode Laser Coating of Hydroxyapatite/Titanium Nanoparticles on Metallic Implants: Multiphysics Simulation and Experimental Verification

Author:

Zhang Martin Yi1,Cheng Gary J.1

Affiliation:

1. School of Industrial Engineering, Purdue University, West Lafayette, IN 47906

Abstract

A novel methodology of laser coating of mixture of bioceramic and titanium nanoparticles onto metal implants is developed in this work. Feasibility of this approach is demonstrated via both multiphysics simulation and experiments. Treating incident laser as an electromagnetic wave, an electromagnetic (EM) module is coupled with a heat transfer (HT) module. The EM-HT model analyzes the interaction between laser and nanoparticles and ends up with a temperature rise in the system. Hydroxyapatite (HAp) and titanium nanoparticles are coated on the Ti–6Al–4V substrate. Processing parameters such as laser power, beam radius, scan speed, and layer thickness are studied, and correlation between these parameters and the final temperature is presented. The effect of the HAp/Ti mixing ratio to the generated temperature is also examined. Experiments are carried out to verify the model. Good agreements have been found between the EM-HT model and experiments.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3