Effect of Coil Torsion on Heat Transfer and Pressure Drop Characteristics of Shell and Coil Heat Exchanger

Author:

Salem M. R.1,Elshazly K. M.1,Sakr R. Y.1,Ali R. K.1

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering at Shoubra, Benha University, 108 Shoubra Street, Cairo 11629, Egypt e-mail:

Abstract

The present work introduces an experimental study of horizontal shell and coil heat exchangers. Characteristics of the convective heat transfer in this type of heat exchangers and the friction factor for fully developed flow through their helically coiled tube (HCT) were investigated. The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid-operating conditions. Here, five heat exchangers of counterflow configuration were constructed with different HCT torsions (λ) and tested at different mass flow rates and inlet temperatures of both sides of the heat exchangers. In total, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of both sides of the heat exchangers and the overall heat transfer coefficient increase by decreasing coil torsion. At lower and higher HCT-side Reynolds number (Ret), the average increase in the HCT-side average Nusselt number (Nu¯t) is of 108.7% and 58.6%, respectively, when λ decreases from 0.1348 to 0.0442. While, at lower and higher shell-side Reynolds number (Resh), the average increase in the shell-side average Nusselt number (Nu¯sh) is of 173.9% and 69.5%, respectively, when λ decreases from 0.1348 to 0.0442. In addition, a slight increase of 6.4% is obtained in the HCT Fanning friction factor (fc) at lower Ret when λ decreases from 0.1348 to 0.0442, and this effect vanishes with increasing Ret. Furthermore, correlations for Nu¯t, Nu¯sh, and fc are obtained.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3