Experimental investigation on the effect of pulsating flow on heat transfer and pressure drop in conical tubes

Author:

Abdelghany Mohamed T.,Elshamy Samir M.,Sharafeldin M. A.ORCID,Abdellatif O. E.

Abstract

AbstractIn order to boost the heat transfer rate in a conical coiled tube (CCT) using an active technique, a solenoid valve was placed ahead of the CCT and employed as a pulse generator in this research. Experimentally, the effect of pulsation on heat transfer and pressure drop in the CCT was investigated. Experiments were conducted for pulsating flow throughout a Womersley number (Wo) range of 30–48, which corresponds to a pulsating frequency of 4–10 Hz, a Dean number (De) of 1148–2983, and a coil torsion (λ) of 0.02–0.052. Results revealed that pulsating flow yields larger Nu values than steady flow. A rise in heat transfer characteristics is achieved by decreasing both the pulse frequency and the coil torsion. A pulsating flow at 4 Hz (Wo = 30) was shown to promote heat transfer by the most of all the examined frequencies. The average Nu increases as De increases, although the friction factor often decreases as De increases. When the coil torsion is reduced from 0.052 to 0.02 while maintaining the same De and Wo, the average Nu and ƒ increase by 23% and 30%, respectively. A correlation for the average Nusselt number and friction factor was presented, taking frequency and coil torsion into account.

Funder

Benha University

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Polymers and Plastics,Materials Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat transfer characteristics of pulsating flow in a straight channel with rhombic-shaped expanding chamber: A numerical study;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3