Wear of Physical Vapor Deposition TiN Coatings Sliding Against Cr-Steel and WC Counterbodies

Author:

Wu Kee-Rong1,Bayer Raymond G.2,Engel Peter A.3,Sun D. C.4

Affiliation:

1. Department of Marine Engineering, National Kaohsiung Institute of Marine Technology, Kaohsiung, Taiwan

2. 4609 Marshall Drive W, Vestal, NY 13850

3. SUNY–Binghamton, Binghamton, NY 13902-6000

4. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000

Abstract

Cutting tools are often coated with titanium nitride (TiN) for its good wear resistance. The method of coating by physical vapor deposition (PVD) has many superior features over other methods of deposition. Among the parameters affecting the wear resistance of PVD TiN coatings, the most crucial ones are the deposition temperature and the coating thickness. This paper presents an experimental investigation of the wear characteristics of PVD TiN coatings produced at two deposition temperatures (around 220°C and 371°C) and for a range of coating thicknesses (0.48 μm to 3.25 μm). A ball-on-flat configuration was used in the study. The flat specimen, made of M2 tool steel coated with TiN, was slid against a 52100 chromium steel (Cr-steel) or a tungsten carbide (WC) ball, dry. These two counterbody materials were chosen because of their different properties. The wear volume was measured and wear scar examined with a 3-D optical profilometer. The worn surfaces and debris were analyzed with scanning Auger microscopy (SAM) and an electron probe microanalyzer (EPMA). Quantitative data were obtained for the wear volume and coefficient of friction (COF) as functions of the sliding cycles. In the case of TiN versus Cr-steel, the presence of transferred wear debris on the flattened ball surface and iron oxide in the wear tracks of the coating surface was a major factor controlling the wear behavior. In the case of TiN versus WC, no transferred layers were observed; instead, the presence of flake type debris from the coating in the wear tracks appeared to be the controlling factor. It was concluded that deposition temperature, coating thickness, and counterface influenced wear behavior. For the lower deposition temperature, wear was significantly reduced by thinner coatings. However, for the higher deposition temperature, wear reduction was only obtained with the Cr-steel counterface.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3