Interactive mechanism and friction modelling of transient tribological phenomena in metal forming processes: A review

Author:

Yang Xiao,Liu Heli,Zhang Lemeng,Hu Yiran,Politis Denis J.,Gharbi Mohammad M.,Wang Liliang

Abstract

AbstractThe accurate representation of tribological boundary conditions at the tool-workpiece interface is crucial for analysis and optimization of formability, material flow, and surface quality of components during metal forming processes. It has been found that these tribological conditions vary spatially and historically with process parameters and contact conditions. These time-dependent tribological behaviours are also known as transient tribological phenomena, which are widely observed during forming processes and many other manufacturing application scenarios. However, constant friction values are usually assigned to represent complex and dynamic interfacial conditions, which would introduce deviations in the relevant predictions. In this paper, transient tribological phenomena and the contemporary understanding of the interaction between friction and wear are reviewed, and it has been found that these phenomena are induced by the transitions of friction mechanisms and highly dependent on complex loading conditions at the interface. Friction modelling techniques for transient behaviours for metal forming applications are also reviewed. To accurately describe the evolutionary friction values and corresponding wear during forming, the advanced interactive friction modelling has been established for different application scenarios, including lubricated condition, dry sliding condition (metal-on-metal contact), and coated system.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3