Vibration Analysis of Postbuckled Timoshenko Beams Using a Numerical Solution Methodology

Author:

Shojaei M. Faghih,Ansari R.1,Mohammadi V.,Rouhi H.2

Affiliation:

1. e-mail:

2. Department of Mechanical Engineering, University of Guilan, P.O. Box 41635-3756, Rasht 41635-3756, Iran

Abstract

In this article, a numerical solution methodology is presented to study the postbuckling configurations and free vibrations of Timoshenko beams undergoing postbuckling. The effect of geometrical imperfection is taken into account, and the analysis is carried out for different types of boundary conditions. Based on Hamilton's principle, the governing equations and corresponding boundary conditions are derived. After introducing a set of differential matrix operators that is used to discretize the governing equations and boundary conditions, the pseudo-arc length continuation method is applied to solve the postbuckling problem. Then, the problem of free vibration around the buckled configurations is solved as an eigenvalue problem using the solution obtained from the nonlinear problem in the previous step. This study shows that, when the axial load in the postbuckling domain increases, the vibration mode shape of buckled beam corresponding to the fundamental frequency may change. Another finding that can be of great technical interest is that, for all types of boundary conditions and in both prebuckling and postbuckling domains, the natural frequency of imperfect beam is higher than that of ideal beam. Also, it is observed that, by increasing the axial load, the natural frequency of both ideal and imperfect beams decreases in the prebuckling domain, while it increases in the postbuckling domain. The reduction of natural frequency in the transition area from the prebuckling domain to the postbuckling domain is due to the severe instability of the structure under the axial load.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3