Interaction Between Thermal Field and Two-Dimensional Functionally Graded Materials: A Structural Mechanical Example

Author:

Tang Ye123,Zhong Shun12,Yang Tianzhi12,Ding Qian12

Affiliation:

1. Department of Mechanics, Tianjin University, Tianjin 300072, P. R. China

2. Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, Tianjin 300072, P. R. China

3. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China

Abstract

The buckling and free vibration of a Euler–Bernoulli beam composed of two-directional functionally graded materials (FGMs) in thermal environment are analyzed. The material properties and temperature distributions are considered to be continuously varied along both axial and thickness directions. Such two-directional FGMs provide the basis of a promising strategy to tune the dynamic behavior of a structure in a controlled fashion, achieving tunable response as desired. The dynamic equation of the beam and relevant boundary conditions are derived based on Hamilton’s principle. The generalized differential quadrature method is used for determining the exact buckling configuration and the natural frequencies of the beam with different boundary conditions. Numerical results are presented to examine the effects of material gradations on the critical buckling temperature. It is concluded that both temperature change and material properties have significant influences on the natural frequency, which suggests that it is possible to tailor or tune the dynamic behaviors of a beam by using man-made FGMs in a complex environment.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Anhui Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3