Cartilage Biomechanical Response Differs Under Physiological Biaxial Loads and Uniaxial Cyclic Compression

Author:

Shegaf Ali1,Speirs Andrew2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, MC, Rm. 3037, Ottawa, ON K1S 5B6, Canada

2. Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, CB, Rm. 3203, Ottawa, ON K1S 5B6, Canada

Abstract

Abstract The main function of articular cartilage is to distribute loads and provide low friction for the opposing surfaces in synovial joints. Biphasic lubrication provided by high fluid load support due to relative motion of the contact surfaces has been widely accepted as the main lubrication mode in diarthrodial joints. However, assessment of chondrocyte response to mechanical loads typically employed nonphysiological uniaxial loads with static contact area. This study aimed to introduce a more physiologically relevant loading protocol for in vitro mechanobiological testing of cartilage explants. Finite element analysis was conducted to examine the biomechanical response of cartilage to two different loading regimes, biaxial loading, that permits migrating contact area, and unconfined uniaxial cyclic compression, traditionally used in mechanobiological experiments. Results predicted in this study showed that continuous tissue rehydration provided by relative surface motion maintained constant fluid pressure and tissue strains through the simulation. On the contrary, due to rapid tissue consolidation predicted in cyclic compression simulation, fluid pressure and transverse strain were reduced by 19% and 26%, respectively. Furthermore, relative surface motion simulation resulted in depth-dependent distribution of fluid pressure and tissue strains while unconfined uniaxial cyclic compression produced nearly uniform fluid pressure through the depth but higher at the center of the sample. Based on the results obtained from this study and since sliding contact occurs in vivo, this physiological loading mode should be considered in assessing biomechanical and mechanobiological cartilage behavior.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3