Simulation of Interactions and Emergent Failure Behavior During Complex System Design

Author:

Papakonstantinou Nikolaos,Sierla Seppo1,Jensen David C.,Tumer Irem Y.2

Affiliation:

1. e-mail:  Department of Automation and Systems Technology, School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, 00076 Finland

2. e-mail:  Complex Engineered System Design Laboratory, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331

Abstract

Emergent behavior is a unique aspect of complex systems, where they exhibit behavior that is more complex than the sum of the behavior of their constituent parts. This behavior includes the propagation of faults between parts, and requires information on how the parts are connected. These parts can include software, electronic and mechanical components, hence requiring a capability to track emergent fault propagation paths as they cross the boundaries of technical disciplines. Prior work has introduced the functional failure identification and propagation (FFIP) simulation framework, which reveals the propagation of abnormal flow states and can thus be used to infer emergent system-wide behavior that may compromise the reliability of the system. An advantage of FFIP is that it is used to model early phase designs, before high cost commitments are made and before high fidelity models are available. This has also been a weakness in previous research on FFIP, since results depend on arbitrary choices for the values of model parameters and timing of critical events. Previously, FFIP has used a discrete set of flow state values and a simple behavioral logic; this has had the advantage of limiting the range of possible parameter values, but it has not been possible to model continuous process dynamics. In this paper, the FFIP framework has been extended to support continuous flow levels and linear modeling of component behavior based on first principles. Since this extension further expands the range of model parameter values, methods and tools for studying the impact of parameter value changes are introduced. The result is an evaluation of how the FFIP results are impacted by changes in the model parameters and the timing of critical events. The method is demonstrated on a boiling water reactor model (limited to the coolant recirculation and steam outlets) in order to focus the analysis of emergent fault behavior that could not have been identified with previously published versions of the FFIP framework.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Function Failure Identification and Propagation Analysis Methods for System Design;Journal of Computing and Information Science in Engineering;2024-07-05

2. The Development of the Integrated System Failure Analysis and Its Applications;Risk, Reliability and Safety Engineering;2024

3. Mission Reliability Evaluation of Dynamic Distributed Cooperative Systems Based on Multi-agent Modeling and Simulation;2023 5th International Conference on System Reliability and Safety Engineering (SRSE);2023-10-20

4. Roadmap to semi-automatic generation of digital twins for brownfield process plants;Journal of Industrial Information Integration;2021-09

5. Making design decisions under uncertainties: probabilistic reasoning and robust product design;Journal of Intelligent Information Systems;2021-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3