Abstract
AbstractMaking design decisions is characterized by a high degree of uncertainty, especially in the early phase of the product development process, when little information is known, while the decisions made have an impact on the entire product life cycle. Therefore, the goal of complexity management is to reduce uncertainty in order to minimize or avoid the need for design changes in a late phase of product development or in the use phase. With our approach we model the uncertainties with probabilistic reasoning in a Bayesian decision network explicitly, as the uncertainties are directly attached to parts of the design artifact′s model. By modeling the incomplete information expressed by unobserved variables in the Bayesian network in terms of probabilities, as well as the variation of product properties or parameters, a conclusion about the robustness of the product can be made. The application example of a rotary valve from engineering design shows that the decision network can support the engineer in decision-making under uncertainty. Furthermore, a contribution to knowledge formalization in the development project is made.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献