A Knowledge-Based Engineering System for the Planning of Networked Rainwater Harvesting and Distribution Systems

Author:

Gembarski Paul Christoph1ORCID,Melching Jan1,Plappert Stefan1ORCID

Affiliation:

1. Institute of Product Development, Leibniz University of Hannover, 30823 Garbsen, Germany

Abstract

Rainwater harvesting attracts growing interest from the field of municipal planning. When considering a rainwater harvesting system as a design object, questions include whether the system is designed for a single property or for a local water network serving multiple properties, what allows for the inclusion of buffer tanks and resource balancing among participants in the network, how to size the tanks, and how robust the system is in the face of changing demands. Knowledge-based engineering provides methods and a tool set for such planning objects. For this article, the authors applied techniques based on model-based and resource-based configuration and Bayesian decision networks to propose a knowledge-based engineering system for residential, networked rainwater harvesting and distribution systems. This enables designers to investigate the effects of different catchment areas, adjust or minimize the storage tank sizes in the grid and evaluate their effect on the individual harvest and the exchange with a central network buffer, evaluate the demands within a neighborhood based on a detailed consumer model also over time, and test the sensitivities of the single sinks and sources to the water grid. For urban planners, this offers the possibility, for example, to make design obligations for housing construction or for the refurbishment of settlements.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3