Influence of Pulse Characteristics on Turbocharger Radial Turbine

Author:

Mosca Roberto1,Lim Shyang Maw1,Mihaescu Mihai1

Affiliation:

1. Department of Engineering Mechanics, KTH Royal Institute of Technology, CCGEx, Stockholm 10044, Sweden

Abstract

Abstract Turbocharging has been demonstrated as a key technology to enhance fuel efficiency in the automotive field that faces increasingly stringent emission regulations. Due to the reciprocating engine, pulsating flow feds the turbocharger turbine, which experiences conditions far from a continuous flow scenario. In this work, the effects of the characteristics of the mass flow pulse, parameterized through amplitude, frequency, and temporal gradient, are decoupled and studied via unsteady computational fluid dynamics calculations under on-engine operating conditions. First, the model is validated based on comparisons with experimental data in gas-stand conditions. Then, the effect of each parameter on the exergy budget is assessed by considering a ±10% variation with respect to a baseline pulse. The other factors defining the operating conditions (e.g., mass flow, shaft speed, and inflow exergy) are kept the same as the baseline. The adopted approach enables to completely isolate the effects of each parameter in contrast with previous literature studies. Based on the results observed, pulse amplitude is identified as the primary parameter affecting the hot-side system response in terms of turbine performance, heat transfer, and entropy generation, while frequency and temporal gradient show a smaller influence compared to it. As the pulse amplitude increases, the turbine work is reported to improve up to 9.4%. Smaller variations are otherwise observed for the frequency and temporal gradient analysis. With a 10% increase of the pulse frequency, the turbine work is registered to improve by 5.0%, while the same percentage reduction of the temporal gradient leads to an increase of the turbine work equal to 3.6%.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference34 articles.

1. Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions;ASME J. Turbomach.,2012

2. An Experimental Investigation of Non-Steady Flow in a Radial Gas Turbine,1965

3. Nonsteady Flow in a Turbocharger Nozzleless Radial Gas Turbine,1974

4. Performance of Radial Flow Turbines Under Pulsating Flow Conditions;ASME J. Eng. Power,1976

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3