Vortex Dynamics in the Turbulent Wake of a Single Step Cylinder

Author:

Morton C.1,Yarusevych S.2

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada e-mail:

2. Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

Abstract

The turbulent wake development of a circular cylinder with a single stepwise discontinuity in diameter was investigated experimentally using flow visualization and two-component Laser Doppler Velocimetry (LDV). A single step cylinder is comprised of two cylinders of different diameters (D and d). Experiments were performed at a Reynolds number (ReD) of 1050 and a diameter ratio (D/d) of two. A combination of hydrogen bubble and laser induced fluorescence techniques allowed visualization of complex vortex dynamics in the near wake. The results show that turbulent vortex shedding from a single step cylinder occurs in three distinct cells of constant shedding frequency. The differences in frequency and strengths between vortices in the cells lead to complex vortex interactions at the cell boundaries. The results demonstrate that vortex splitting, half-loop vortex connections, and direct cross-boundary vortex connections occur near the cell boundaries. A comparative analysis of flow visualizations and velocity measurements is used to characterize the main vortex cells and the attendant vortex interactions, producing a simplified model of vortex dynamics in the step cylinder wake for ReD = 1050 and D/d = 2.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3